
����������		�
����

A product by Kaosweaver and TJK Design

Add one set of CSS code, two images, one unordered HTML list and a

Dreamweaver extension and end up with a menu system that scales according to

the font size you set or to the browser font size selection. Completely accessible

for those with visual disabilities who need larger text. Search engine friendly!

100% CSS solution without any CSS hacks and no JavaScript! The three

images above were all captured off of the same page; the only difference was the

font size setting.

Complete CSS Menu is a single command extension.

For Dreamweaver MX and higher, Windows 2000 & XP or higher and OS 9.x and higher

Table of Contents

Start here

Overview 3

Setup and Installation 5

License 9

Complete CSS Menu Extension Guide

Interface 10

Setting up a menu 11

Editing an existing menu 14

Setting up a design time CSS 15

Wrap Up

Troubleshooting 19

Overview

Complete CSS Menu is a Dreamweaver command, found under the Command

menu and Kaosweaver sub panel.

The command produces a menu system that will allow your visitors to navigate

your site with ease. The menu is accessible, valid CSS, fast to download,

scalable and fast to implement.

Complete CSS Menu Features:

• Scalable Menu to browser or selectable font size

• Rollover menu tabs

• Current page selection to let the visitors know were they are

• Extension aware design time CSS for close to WYSIWYG design

• External CSS for rapid download and global menu changes

• Editable menu items, no need to rework the menu for each change

• Preview of menu tab within the extension, including menu text

• Font family and color selection within extension

• Comes with 9 pre-made menu tabs, including rollover tabs

• Search engine friendly

• Extensive tutorial on the CSS scripting for the menu

Setup and Installation

Loading the extension into Dreamweaver

All extensions for Dreamweaver are loaded the same way, regardless of platform

(PC or Mac) that the extension is on. One package (KW_cCSSMenu.mxp) is

used for both Windows and Macintosh distribution. Some requirements exist for

our extensions as detailed below:

� Dreamweaver MX

o Extension Manager v1.6

o Dreamweaver MX v6.01 update or later

� Dreamweaver MX 2004

o Extension Manager v1.6

o Dreamweaver MX v7.01 or later

All of these are available as updates for free from the Macromedia website in

their download section. This location has changed in the past or we’d provide a

URL for you to reference. Our policy is to support the current release of

Dreamweaver and the prior version. All versions behind the current version by

two releases may be supported, however, we are unable to troubleshoot issues

un-reproducible on the supported versions of Dreamweaver.

To load the extension, save it from the email you received with it attached. If

you’ve requested the delivery email and it has not come yet, please check your

email filtering software and check your junk bin. We do know most of the free

email services will have email delivery delays of one to four hours. If time is

absolutely critical, please send our support staff an email and we may be able to

assist in a quicker delivery. Another alternative is to change the email on your

account at the Kaosweaver site and resend the product to yourself. The delivery

system is subject to the limitations of email delivery and may sometimes

experience delays because of the latest virus, worm or spam on the Internet.

Once the extension is saved from the email, find it on your drive. Once found,

double clicking on the extension will load Extension Manager that will automate

the process of installation. Some possible messages will include a request to

overwrite existing files. You can answer Yes or No to any of these and the install

should not be impacted. This is usually due to shared images or resource files

that Kaosweaver uses to prevent installing unique files for each extension which,

in reality, are identical. Certain extensions will have resource files that you can

edit through the extension and these extensions will require a little caution when

re-installing to prevent your past modifications from being removed. All resource

files from Kaosweaver will be saved with .xml extensions. Always answer no to

overwriting these files when asked by the Extension Manager unless you’re

willing to lose the modifications (sometimes needed if the modifications crash the

system). This process of installation is also the method we recommend when the

extension (and most likely your system) becomes unstable and possibly corrupt.

Dreamweaver is a great program, however, occasionally, it fails to run properly

and has been known to corrupt third party (Kaosweaver for instance) extensions.

Troubleshooting

If the installation encounters some problems, these solutions tend to work. Try

them prior to emailing Kaosweaver for support (because this is what we’ll tell you

to try anyway):

1. Load Dreamweaver while attempting to install the extension.

2. Check your Extension Manager version with Macromedia to

ensure you’ve got the latest version.

3. Load Extension Manager, select Dreamweaver (your version)

from the dropdown, select Install Extension from the File menu

and navigate to the extension package and select it.

4. Check your file associations (this is system dependant, check

your user manual or local techie on how to do this) and see if

.mxp as a file extension is associated to Extension Manager.

Restarting Dreamweaver

Once the extension is installed (or re-installed), restart Dreamweaver. This is

critical for the extension to show up in the menus and be available.

Finding Complete CSS Menu

This command is found under the command menu as shown below:

Working with the demo files

This extension comes with an excellent tutorial on the CSS properties and how to

get the most out of the CSS, written by Thierry Koblentz from TJK Design. This

will be the TJKTabs.zip file included in the zip file with this document pdf file.

Also included is the tabs.zip file which contains a PNG file with all of the tabs

from the extension in it. This can be used for modifying the tabs to suit your

site's color scheme or help you to create new ones.

Unzip the files into a folder. The files all expand into one folder and the images,

CSS files and HTML files are accessible from this folder. Click on the file named

tutorial.htm to start looking at the tutorial

Which also contains a User Guide for assistance on page construction to get the

most out of the Complete CSS Menu.

For the best understanding of the resulting code, please consult these

documents.

License

�� ���������	��
���
�	������	��������	��������������	���������	�������	�������	�������
������	�����������������	
�����	������� �������!�
"�����!##�$�	 ��%��	���	��

&� ����	������'	�����
�����������������	�������
�����	�	�%�� ���������	��������	��������	��
��
��	��������	����(���������������
������	���	���������	�����#�(�������

)� ���������	���"��
��������	��������	����������#�(�������	�
�������	��	����
" ���������
�����
��	
��������#�(�����������	������ �����	�
�������	��	����
" ���������
���
 ���	�� �����

����	���������	���
�'����"�����(�����#�(�����������������"�����(�����#�(������������
�������
�������� 	������ �����*���������������	���+
���
�	�������	����
���
�'����"�����(�����
#�(������(������' "�" �"������	�����

,� �����#�(���������� �-�����������
����������	��������	���������	����������	�������������"��������

���
��	������������#�(���������������� �������(����(��
���(������	�
����������	��
���'
�	���"� 	����	��
��� ��������#�(�����������"��(��
��������	
��������"��	����
���
�	�����	���	���������������(�����	���.��'	�����
������	���.�� ����(������#�(������
�������	
��������"��	�������
�	�����	����	����	��	(��	
�
�	���(��	��������"����.���	������� ���
"��"�������
�������������%��	��"��
���������������/��+012�3#�+��4���$���4�5+66+7�8�
6�9�+!�#�+���1�/�6�5+66+7���#���:96�##�16��$9���4��+74���!�7#16�4�#!�+�$#�+���
�$9���4�5+66+7���#��7!��4�7;�+78��$9���4�5+66+7�8�1<��������$�6!/+7�+0����8��
717�7<6�7;�$�7���16�1<�<��7�##�<16�+�9+6��!��+6�9�691#���7���
�	���(�����	�������

� �����*������
�'���	�������������	�����������
���(���������
����������	��������	��������
�"���(�����
�����
����" �� �	���������������	����	�����"�	��	
��	�����	���.��- ���������	��
���
������������	�����
������

=� 7���������	��	
�����(���
��	
����!�7#16��#�71����+0����1���!�7#���<16�+78�4+$+;�#��
�7!��4�7;�!1$9�7#+�168��#9�!�+����7!�4�7�+����:�$9�+68��9�7���2���16�
!17#�>��7��+��4+$+;�#��!177�!��4�5��/�16�6�#����7;�<61$��/�#���!�7#��
+;6��$�7��16���!�7#��.#��#��1<��/�#�#1<�5+6������������������	����������	 �����
�������������
���������(�����������!�7#����������������(�����"������������(�� �����������	�
����	�����	�	�����	����������!�7#16.���������������� 	�����%����������
� 	���(�����	���(����
"�����������	�������
���������(�������������	���.������
�����������	���	��������������������
�����������"��� �������������������������������	���.��- ���������	�
���	���������� �������
������	�
�(���
�
��������������
������	�
���	����""����

?� ����	�����
����������(�	���	���	��
	�(������	�����	�����������	�������
�����(��
���������
���
����������
�
������
"���	��������%"�	������		����������������� ���	
�(��
�����	���.��
� ��	�����"������	����

@� ����	��������������
���������
�	�������������	���+
���
�	���	������	���.����
������ ��������
#�(������ "�	��	��
����������������������	�����

A� ����	�����
����������� �	��������	������������������������"�����(�����#�(������ "�	����
�	����	�
�(���������	����

B� ���������	���+
���
�	����������	������	���%�� ������
���
�	��������	�����	�����	������	����
��
����	
������#�(����������������	���+
���
�	����"�������	��� "������������"�����
	�
�������	��������	
����	���
���
�	���������	�����	�����	������	������
����	
������
#�(��������

�C� ���������	���+
���
�	���������������� ������	���.����
	�� �����������
����((������� "�	�����
���������(�����	���.����
	�� ����������	���.�� ����(�����#�(�������

��� ������������%��	���	�����������
��'���(�������������	���$����
������4���
��������
�	�D���<������'���������
�������������
��'��������
��'��������"���
�����(�$����
�������	���
�	������	�����#�������(�+
�������	�D����������� 	�������

Complete CSS Menu Extension Guide

Interface

The Complete CSS Menu has several entries for the proper display of your

menu. The first part is the buttons, the Menu Title list box, Title and Link. These

all combine to control the number of tabs in the menu, which one is current (or

active) for the page and where the tabs will link to. The Font, Color and Tabs

control how the tabs will be displayed. The Link, Font and Color are optional all

other fields are required. The Command buttons are OK, Cancel and Help.

Setting up a menu

1. Load Dreamweaver:

2. Select a site:

3. Open a file or create a new one.

4. If creating a new file SAVE THE FILE PRIOR TO RUNNING COMLETE

CSS MENU this will ensure the file path to your external CSS files will be

recorded properly. Dreamweaver doesn't update file paths inside IE

Conditional Comment.

5. Select the command menu.

6. Select Kaosweaver sub menu (or Kaosweaver.com sub menu, depending

on your last installed extension selection)

7. Select Complete CSS Menu and the extension will load:

8. Click on the Add button for as many menu tabs as you need.

9. Click on an entry in the Menu Title list box, the existing title will appear in

the Title text field and the link will appear in the Link text field. If no link

has been selected, nothing will appear when creating the menu.

10. Change the title to match the text you would like on the tab.

11. Type in the link or use the Browse… button to find the file in your local

site.

12. If the page being worked on is one of the menu items, select that Menu

Title from the Menu Title list box and click on the Current button which will

append the name with “ [*]”, this is the designator for the current page and

this will not appear on the title for the page.

13. If you have an entry in the Menu Title list box that you need to delete,

clicking on the Delete button will change the title by adding a “<” in front of

the title and a “>” after the title. If the deleted entry was selected as the

current tab, this designation will be removed.

14. Repeat the process until all of the menu items have been titled and linked

as needed.

15. If you would like the extension to manage the font, select the font for the

menu from the dropdown. This font will apply to all of the tabs in the

menu.

16. If you would like the extension to manage the color, select the color for the

menu from the color picker or enter in the hex code color (with the #

preceding the 6 digit hex code). The extension does not validate short

hand CSS color entries (#fff for #ffffff) so long hex code entries will be

required.

17. Finally, select the tab style you would like from the list. A preview of the

selected tab style will be shown below, complete with the text from the last

selected menu item in the Menu Title select box. If you would like to use a

custom menu graphic, select one of the graphics from the list and then

consult the tutorial and user guide in the HTML to replace the image. Do

not name the image the same as the images used in the extension, they

could be overwritten by the extension.

18. Click OK and the menu will appear on the page. Check the instructions on

setting up a design time style guide to make the inserted menu look better

in the Dreamweaver interface.

Editing an Existing Menu

1. Load Dreamweaver.

2. Load the page that has Complete CSS Menu on it.

3. Load the Complete CSS Menu command (as described in steps 5, 6 and 7

in the prior section)

4. The Complete CSS Menu will appear with all of the options last entered

shown within the extension.

5. The preview will have default text in it until a Menu Title is selected

6. If you are using a custom image, the preview section will display a gray

image instead of the image you’re using for the menu.

7. At this point, the menu is ready to be altered as if you had just finished

entering all of the information into the extension for the first time. Any

updates to the tabs, font or color will affect all menus attached to the CSS

for the menu.

Setting up a Design Time CSS

These instructions are for Dreamweaver MX 2004 and have not been tested in

Dreamweaver MX

1. Load Dreamweaver

2. Load the page with the Complete CSS Menu on it

3. Find the documentation and then locate the file named TJKdtss.css and

copy this to the kaosjs folder in the site where the page from step 2 is.

4. Load the CSS Panel from Dreamweaver:

5. Which opens the CSS Panel:

6. Right click on the white space in the CSS Panel which will bring up this

context sensitive menu:

7. Select the Design-time… option which will load the selector:

8. On the first box, Show only at design time:, click on the + above this box

which will open up the file selector:

9. Navigate to the kaosjs folder and select the file from step 3 we copied to

this folder:

10. Click OK and the file will be moved to the Design Time dialogue box:

11. Click OK and the menu will be changed to look better. Whenever you

update the menu in Dreamweaver through the extension, the design time

sheet will also be updated. However, Dreamweaver doesn’t always

refresh this in the design view for the page. If this is the case, closing the

files and reopening them will reset the look of the page. Always save the

files prior to closing them.

The design time CSS file does not need to be uploaded to the server as it is only

used through the design Dreamweaver view of the page and not on the browser

display of the page. The design time isn’t an exact or perfect representation of

the actual display in the browser, it is just designed to give you a visual look and

feel for the site so you can have some good visual feedback for your page

design.

Wrap Up

Thank you for purchasing Complete CSS Menu. We hope you’ve found this

documentation helpful and the extension profitable for your business or enabling

you to make your web site work how you want it to. We hope we’ve covered all

of the possible options, questions or usage issues with the manual. We have

support available, either from email, forum or our ticket system, in case we’ve not

explained something sufficiently enough so that you are able to use the product.

We want to stress, please send us an email before investing hours working

on this extension if you encounter a problem we’ve not expected. It has

been our experience that we’re able to resolve almost all issues within

minutes of receiving the email (which could take some time to receive,

depending on when it gets sent). We are active and aggressive in releasing

fixes, updates or modifications when we have something better. In order to

provide the best support we can for you is have you provide us meaningful

messages.

These bullet points are from an article on Effective Bug Reporting by Simon

Tatham published under his OpenContent Licence. The copy has been modified

to suit our applications.

How to Report Bugs Effectively

by Simon Tatham, professional and free-software programmer

Introduction

Anybody who has written software for public use will probably have
received at least one bad bug report. Reports that say nothing ("It doesn't
work!"); reports that make no sense; reports that don't give enough
information; reports that give wrong information. Reports of problems that
turn out to be user error; reports of problems that turn out to be the fault of
somebody else's program; reports of problems that turn out to be network
failures.

There's a reason why technical support is seen as a horrible job to be in,
and that reason is bad bug reports. However, not all bug reports are
unpleasant: I maintain free software, when I'm not earning my living, and
sometimes I receive wonderfully clear, helpful, informative bug reports.

In a nutshell, the aim of a bug report is to enable the programmer to see the
program failing in front of them. You can give them careful and detailed
instructions on how to make it fail. If they can make it fail, they will try to
gather extra information until they know the cause. If they can't make it fail,
they will have to ask you to gather that information for them.

In bug reports, try to make very clear what are actual facts ("I was at the
computer and this happened") and what are speculations ("I think the
problem might be this"). Leave out speculations if you want to, but don't
leave out facts.

When you report a bug, you are doing so because you want the bug fixed.
There is no point in swearing at the programmer or being deliberately
unhelpful: it may be their fault and your problem, and you might be right to
be angry with them, but the bug will get fixed faster if you help them by
supplying all the information they need.

"It doesn't work."

Give the programmer some credit for basic intelligence: if the program
really didn't work at all, they would probably have noticed. Since they

haven't noticed, it must be working for them. Therefore, either you are doing
something differently from them, or your environment is different from
theirs. They need information; providing this information is the purpose of a
bug report. More information is almost always better than less.

If you are not reporting a bug but just asking for help using the program,
you should state where you have already looked for the answer to your
question. ("I looked in chapter 4 and section 5.2 but couldn't find anything
that told me if this is possible.") This will let the programmer know where
people will expect to find the answer, so they can make the documentation
easier to use.

"Show me how to show myself."

If you have to report a bug to a programmer who can't be present in person,
the aim of the exercise is to enable them to reproduce the problem. You
want the programmer to run their own copy of the program, do the same
things to it, and make it fail in the same way. When they can see the
problem happening in front of their eyes, then they can deal with it.

So tell them exactly what you did. If it's a graphical program, tell them which
buttons you pressed and what order you pressed them in. If it's a program
you run by typing a command, show them precisely what command you
typed. Wherever possible, you should provide a verbatim transcript of the
session, showing what commands you typed and what the computer output
in response.

Give the programmer all the input you can think of. If the program reads
from a file, you will probably need to send a copy of the file. If the program
talks to another computer over a network, you probably can't send a copy of
that computer, but you can at least say what kind of computer it is, and (if
you can) what software is running on it.

[Kaosweaver: send all files to us by zipping them into one file, with
subfolders as necessary – unzipped files are deleted by virus and spam
filters]

[Kaosweaver – If possible, upload the page if the error isn’t in the extension
and provide the URL to the page, this is very very helpful]

"Works for me. So what goes wrong?"

If you give the programmer a long list of inputs and actions, and they fire up
their own copy of the program and nothing goes wrong, then you haven't
given them enough information. Possibly the fault doesn't show up on every
computer; your system and theirs may differ in some way. Possibly you

have misunderstood what the program is supposed to do, and you are both
looking at exactly the same display but you think it's wrong and they know
it's right.

So also describe what happened. Tell them exactly what you saw. Tell them
why you think what you saw is wrong; better still, tell them exactly what you
expected to see. If you say "and then it went wrong", you have left out some
very important information.

If you saw error messages then tell the programmer, carefully and
precisely, what they were. They are important! At this stage, the
programmer is not trying to fix the problem: they're just trying to find it. They
need to know what has gone wrong, and those error messages are the
computer's best effort to tell you that. Write the errors down if you have no
other easy way to remember them, but it's not worth reporting that the
program generated an error unless you can also report what the error
message was.

In particular, if the error message has numbers in it, do let the programmer
have those numbers. Just because you can't see any meaning in them
doesn't mean there isn't any. Numbers contain all kinds of information that
can be read by programmers, and they are likely to contain vital clues.
Numbers in error messages are there because the computer is too
confused to report the error in words, but is doing the best it can to get the
important information to you somehow.

At this stage, the programmer is effectively doing detective work. They don't
know what's happened, and they can't get close enough to watch it
happening for themselves, so they are searching for clues that might give it
away. Error messages, incomprehensible strings of numbers, and even
unexplained delays are all just as important as fingerprints at the scene of a
crime. Keep them!

[Kaosweaver: Screen shots of error messages are perfect! If just sending
one or two images of errors, you don’t have to zip them, please use jpeg or
gif formats for size considerations]

"So then I tried . . ."

There are a lot of things you might do when an error or bug comes up.
Many of them make the problem worse. A friend of mine at school deleted
all her Word documents by mistake, and before calling in any expert help,
she tried reinstalling Word, and then she tried running Defrag. Neither of
these helped recover her files, and between them they scrambled her disk
to the extent that no Undelete program in the world would have been able
to recover anything. If she'd only left it alone, she might have had a chance.

Users like this are like a mongoose backed into a corner: with its back to
the wall and seeing certain death staring it in the face, it attacks frantically,
because doing something has to be better than doing nothing. This is not
well adapted to the type of problems computers produce.

Instead of being a mongoose, be an antelope. When an antelope is
confronted with something unexpected or frightening, it freezes. It stays
absolutely still and tries not to attract any attention, while it stops and thinks
and works out the best thing to do. (If antelopes had a technical support
line, it would be telephoning it at this point.) Then, once it has decided what
the safest thing to do is, it does it.

When something goes wrong, immediately stop doing anything. Don't touch
any buttons at all. Look at the screen and notice everything out of the
ordinary, and remember it or write it down. Then perhaps start cautiously
pressing "OK" or "Cancel", whichever seems safest. Try to develop a reflex
reaction - if a computer does anything unexpected, freeze.

If you manage to get out of the problem, whether by closing down the
affected program or by rebooting the computer, a good thing to do is to try
to make it happen again. Programmers like problems that they can
reproduce more than once. Happy programmers fix bugs faster and more
efficiently.

"I think the tachyon modulation must be wrongly polarised."

It isn't only non-programmers who produce bad bug reports. Some of the
worst bug reports I've ever seen come from programmers, and even from
good programmers.

I worked with another programmer once, who kept finding bugs in his own
code and trying to fix them. Every so often he'd hit a bug he couldn't solve,
and he'd call me over to help. "What's gone wrong?" I'd ask. He would reply
by telling me his current opinion of what needed to be fixed.

This worked fine when his current opinion was right. It meant he'd already
done half the work and we were able to finish the job together. It was
efficient and useful.

But quite often he was wrong. We would work for some time trying to figure
out why some particular part of the program was producing incorrect data,
and eventually we would discover that it wasn't, that we'd been investigating
a perfectly good piece of code for half an hour, and that the actual problem
was somewhere else.

I'm sure he wouldn't do that to a doctor. "Doctor, I need a prescription for
Hydroyoyodyne." People know not to say that to a doctor: you describe the
symptoms, the actual discomforts and aches and pains and rashes and
fevers, and you let the doctor do the diagnosis of what the problem is and
what to do about it. Otherwise the doctor dismisses you as a hypochondriac
or crackpot, and quite rightly so.

It's the same with programmers. Providing your own diagnosis might be
helpful sometimes, but always state the symptoms. The diagnosis is an
optional extra, and not an alternative to giving the symptoms. Equally,
sending a modification to the code to fix the problem is a useful addition to
a bug report but not an adequate substitute for one.

If a programmer asks you for extra information, don't make it up! Somebody
reported a bug to me once, and I asked him to try a command that I knew
wouldn't work. The reason I asked him to try it was that I wanted to know
which of two different error messages it would give. Knowing which error
message came back would give a vital clue. But he didn't actually try it - he
just mailed me back and said "No, that won't work". It took me some time to
persuade him to try it for real.

Using your intelligence to help the programmer is fine. Even if your
deductions are wrong, the programmer should be grateful that you at least
tried to make their life easier. But report the symptoms as well, or you may
well make their life much more difficult instead.

"That's funny, it did it a moment ago."

Say "intermittent fault" to any programmer and watch their face fall. The
easy problems are the ones where performing a simple sequence of actions
will cause the failure to occur. The programmer can then repeat those
actions under closely observed test conditions and watch what happens in
great detail. Too many problems simply don't work that way: there will be
programs that fail once a week, or fail once in a blue moon, or never fail
when you try them in front of the programmer but always fail when you have
a deadline coming up.

Most intermittent faults are not truly intermittent. Most of them have some
logic somewhere. Some might occur when the machine is running out of
memory, some might occur when another program tries to modify a critical
file at the wrong moment, and some might occur only in the first half of
every hour! (I've actually seen one of these.)

Also, if you can reproduce the bug but the programmer can't, it could very
well be that their computer and your computer are different in some way
and this difference is causing the problem. I had a program once whose

window curled up into a little ball in the top left corner of the screen, and sat
there and sulked. But it only did it on 800x600 screens; it was fine on my
1024x768 monitor.

The programmer will want to know anything you can find out about the
problem. Try it on another machine, perhaps. Try it twice or three times and
see how often it fails. If it goes wrong when you're doing serious work but
not when you're trying to demonstrate it, it might be long running times or
large files that make it fall over. Try to remember as much detail as you can
about what you were doing to it when it did fall over, and if you see any
patterns, mention them. Anything you can provide has to be some help.
Even if it's only probabilistic (such as "it tends to crash more often when
Emacs is running"), it might not provide direct clues to the cause of the
problem, but it might help the programmer reproduce it.

Most importantly, the programmer will want to be sure of whether they're
dealing with a true intermittent fault or a machine-specific fault. They will
want to know lots of details about your computer, so they can work out how
it differs from theirs. A lot of these details will depend on the particular
program, but one thing you should definitely be ready to provide is version
numbers. The version number of the program itself, and the version number
of the operating system, and probably the version numbers of any other
programs that are involved in the problem.

"So I loaded the disk on to my Windows . . ."

Writing clearly is essential in a bug report. If the programmer can't tell what
you meant, you might as well not have said anything.

I get bug reports from all around the world. Many of them are from non-
native English speakers, and a lot of those apologise for their poor English.
In general, the bug reports with apologies for their poor English are actually
very clear and useful. All the most unclear reports come from native English
speakers who assume that I will understand them even if they don't make
any effort to be clear or precise.

• Be specific. If you can do the same thing two different ways, state which
one you used. "I selected Load" might mean "I clicked on Load" or "I
pressed Alt-L". Say which you did. Sometimes it matters.

• Be verbose. Give more information rather than less. If you say too much,
the programmer can ignore some of it. If you say too little, they have to
come back and ask more questions. One bug report I received was a
single sentence; every time I asked for more information, the reporter
would reply with another single sentence. It took me several weeks to get
a useful amount of information, because it turned up one short sentence at
a time.

• Be careful of pronouns. Don't use words like "it", or references like "the
window", when it's unclear what they mean. Consider this: "I started
FooApp. It put up a warning window. I tried to close it and it crashed." It
isn't clear what the user tried to close. Did they try to close the warning
window, or the whole of FooApp? It makes a difference. Instead, you
could say "I started FooApp, which put up a warning window. I tried to
close the warning window, and FooApp crashed." This is longer and more
repetitive, but also clearer and less easy to misunderstand.

• Read what you wrote. Read the report back to yourself, and see if you
think it's clear. If you have listed a sequence of actions which should
produce the failure, try following them yourself, to see if you missed a
step.

Summary

• The first aim of a bug report is to let the programmer see the failure with
their own eyes. If you can't be with them to make it fail in front of them,
give them detailed instructions so that they can make it fail for themselves.

• In case the first aim doesn't succeed, and the programmer can't see it
failing themselves, the second aim of a bug report is to describe what
went wrong. Describe everything in detail. State what you saw, and also
state what you expected to see. Write down the error messages,
especially if they have numbers in.

• When your computer does something unexpected, freeze. Do nothing until
you're calm, and don't do anything that you think might be dangerous.

• By all means try to diagnose the fault yourself if you think you can, but if
you do, you should still report the symptoms as well.

• Be ready to provide extra information if the programmer needs it. If they
didn't need it, they wouldn't be asking for it. They aren't being deliberately
awkward. Have version numbers at your fingertips, because they will
probably be needed.

• Write clearly. Say what you mean, and make sure it can't be
misinterpreted.

• Above all, be precise. Programmers like precision.

Disclaimer: I've never actually seen a mongoose or an antelope. My zoology may
be inaccurate.

$Id: bugs.html,v 1.24 2004/06/01 14:06:37 simon Exp $

Copyright © 1999 Simon Tatham.
This document is OpenContent.
You may copy and use the text under the terms of the OpenContent Licence.

Please send comments and criticism on this article to anakin@pobox.com.

We would like to add some things that we’ve noticed help us help you a lot

better:

1. Always restart Dreamweaver after installing an extension.

2. Always work from a saved page that is part of a site, unconnected pages

don’t work well with paths to files it can’t find. Dreamweaver has no clue

where you want to save the file and it will insert machine paths instead of

relative paths which enable the web server to find the file.

3. If you get an error working on a complex page, try the same process on a

blank page with just the minimum elements needed to accomplish the

same task. For instance, in Expert Calendar, just have a form, the form

elements used, the link/button/image and then a layer (if needed) and see

if the error can be duplicated.

4. Put it on a test page and on a web server.

5. Try it on another machine.

6. Try it on a machine not using Windows 98 or Windows ME or Mac OS 8.x

or Mac OS 9.x.

7. Always state what version of Dreamweaver you have (including if you’ve

upgraded to the latest bug fix from Macromedia), the Extension Manager if

you’re having install problems, and the operating system with version. If

these are stated, we will ask before even looking into the problem.

Following these suggestions will assist us in providing you with the quickest

solution to the problem. We really want to solve whatever problem you’ve

encountered with our software. We don’t spending money on things we don’t

think are working like what they said it would do so we don’t want to have our

software fail you and not fix it. If we have the opportunity to fix the problem, we

both win – you get what you paid for, we get the chance to fix a bug we don’t

know about.

Credits

This program was made possible by the input of several important people. Some

people really stood out and we’d like to thank them here:

� Nancy Gill – participated in the beta testing of this extension.

� Kim Kruse - participated in the beta testing of this extension. Provided an

excellent example of the product in a live production site.

� Nadia Perre – participated in the beta testing of this extension.

Paul thanks Samantha, his wife, who sacrifices time with him. Without her

sacrifice, Kaosweaver wouldn’t exist. Paul also thanks God for the skill and

ability to do what he does.

Thank you for purchasing Complete CSS Menu and let us know what else you’d

like to see in an extension!

Paul Davis

http://www.kaosweaver.com/

Thierry Koblentz

http://www.tjkdesign.com/

All screen shots taken with TechSmith’s Snagit v7, visit them on the web here:

http://www.techsmith.com/

